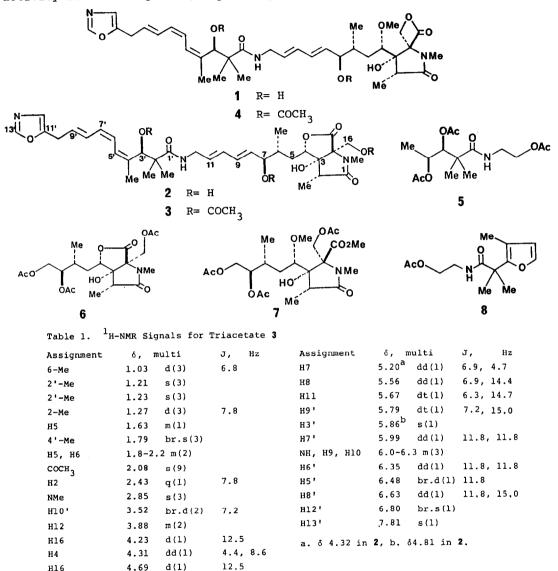
STRUCTURE OF NEOOXAZOLOMYCIN, AN ANTITUMOR ANTIBIOTIC

Kanji TAKAHASHI, Michihiro KAWABATA, and Daisuke UEMURA* Faculty of Liberal Arts, Shizuoka University, Ohya, Shizuoka 422, Japan Shuichi IWADARE, Ryuji MITOMO, Fumio NAKANO, and Akinori MATSUZAKI Banyu Pharmaceutical Co. Ltd., Nihonbashi Honcho, Chuo-ku, Tokyo 103, Japan

Summary: Based on the spectroscopic analysis and correlation with the degradation products of oxazolomycin, the structure of neooxazolomycin has been elucidated.


In the preceding report,¹ we described the structure of oxazolomycin (1), the antitumor antibiotic. Our interests concerning the structure-activity relationship of 1 were focused on the structure of a conjenar, neooxazolomycin which also exhibited comparable activity against Ehrlich ascites tumor in vivo. We report below the structural elucidation of neooxazolomycin (2).

Neooxazolomycin, $C_{34}H_{47}N_{3}O_{9}$ [FDMS, m/Z 664 (M+Na)⁺] contains the triene and diene chromophores, UV (MeOH) 230, 265, 275 and 285 nm like oxazolomycin. However, its IR spectrum revealed the presence of γ -lactone (1765 cm⁻¹) instead of β -lactone in **1**. Then acetylation of neooxazolomycin with Ac₂O and pyridine afforded a triacetate **3**:¹H-NMR (360 MHz, CDCl₃) Table 1. Comparison between the ¹H-NMR spectra of **3** and the diacetate **4** of oxazolomycin led us to the planar structure and furthermore, the following degradation and chemical transformation confirmed the complete structure **2**, including its absolute configuration.

Triacetate **3** was oxidized with O_3 at -40°C and then reduced with NaBH₄. The resulting alcohols were acetylated with Ac₂0 and pyridine to give compounds **5** and **6**.² The triacetate **5** was consistent with the authentic **5**¹ in the spectral data and optical rotation; the degraded **5**: $[\alpha]_D^{=} +8.6^{\circ}(c\ 0.38,\ CHCl_3)$.¹ On the other hand, **6** was correlated with the degradation product **7**¹ of **1**. The methyl ester **7** was treated with BBr₃³ in CH₂Cl₂ at -40°C, followed by treatment with methanol at room temperature. The reaction mixture obtained was acetylated with Ac₂0 and pyridine, furnished compound **6** which was found to be identical with **6** degraded from **2** in all spectral data and optical rotation; **6** from **2**: $[\alpha]_D^{=} +7^{\circ}$ (c 7.0, CHCl₃), **6** from **1**: $[\alpha]_D^{=} +5^{\circ}$ (c 1.0, CHCl₃). Moreover, similarly in the case of **1**, ozonolysis of neooxazolomycin itself (i. O_3 in MeOH, ii. NaBH₄, iii. Ac₂0/py) gave compound **8**. This result was consistent with Z-configuration of C4' double bond.

Although the structure of neooxazolomycin (2) has been fully determined as described, it is of interest that in spite of the presence of β -lactone in 2

comparable activity retains. Therefore, we concluded that β -lactone in **1** was not so serious for revelation of activity. Since 5-substituted oxazoles exhibited in <u>vitro</u> cytotoxicity on L-1210 cells,⁴ we are examining further structure-activity relationship of **1**, especially around the oxazole ring.

REFERENCES AND NOTES

- 1) The preceding paper in this issue.
- 2) **6**, C₂₀H₂₉N0₁₀: IR (CHCl₃) 3450, 1770, 1740, 1695 cm⁻¹; ¹H-NMR (90MHz, CDCl₃) 1.08 (3H,d,J=7Hz), 1.27(3H,d,J=7Hz), 2.08(3H,s), 2.10(6H,s), 2.10(1H,q,J=7 Hz), 2.88(3H,s), 4.0-4.4(3H,m), 4.20(1H,d,J=12Hz), 4.71(1H,d,J=12Hz), 5.00(1H,m).
- 3) This reaction was also achieved with BCl_3 in CH_2Cl_2 .
- 4) Data concerning activity of several 5-substituted oxazoles will be published in future.
 (Received in Japan 27 November 1984)